Vectors II - Lines

	Formula	Example
1	Equation of line Vector form $\quad \mathbf{r}=\mathbf{a}+\lambda \mathbf{b}, \lambda \in \mathbb{R}$ \mathbf{a} is a fixed point on the line, b is direction of line Parametric form Example: Given $\mathbf{r}=\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)+\lambda\left(\begin{array}{l}4 \\ 5 \\ 6\end{array}\right)$ Replace \mathbf{r} with $\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$, we have $\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)+\lambda\left(\begin{array}{l}4 \\ 5 \\ 6\end{array}\right)$, hence $x=1+4 \lambda, y=2+5 \lambda, z=3+6 \lambda$ Cartesian form $\frac{x-1}{4}=\frac{y-2}{5}=\frac{z-3}{6} \quad(=\lambda)$	$\mathbf{r}=\left(\begin{array}{l} 1 \\ 2 \\ 3 \end{array}\right)+\lambda\left(\begin{array}{l} 4 \\ 5 \\ 6 \end{array}\right), \lambda \in \mathbb{R}$
2	Angle between 2 lines $\cos \theta=\frac{\mathbf{b}_{1} \bullet \mathbf{b}_{2}}{\left\|\mathbf{b}_{1}\right\|\left\|\mathbf{b}_{2}\right\|}$, where \mathbf{b}_{1} and \mathbf{b}_{2} are the directions of the lines Note: If acute angle, then $\cos \theta=\frac{\left\|\mathbf{b}_{1} \bullet \mathbf{b}_{2}\right\|}{\left\|\mathbf{b}_{1}\right\|\left\|\mathbf{b}_{2}\right\|}$	$\begin{aligned} & l_{1}: \mathbf{r}=\left(\begin{array}{l} 1 \\ 2 \\ 3 \end{array}\right)+\lambda\left(\begin{array}{l} 4 \\ 5 \\ 6 \end{array}\right) \\ & l_{2}: \mathbf{r}=\left(\begin{array}{l} 2 \\ 3 \\ 4 \end{array}\right)+\mu\left(\begin{array}{l} 2 \\ 5 \\ 7 \end{array}\right) \\ & \cos \theta=\frac{\left(\begin{array}{l} 4 \\ 5 \\ 6 \end{array}\right) \cdot\left(\begin{array}{l} 2 \\ 5 \\ 7 \end{array}\right)}{\sqrt{77} \sqrt{78}}=\frac{75}{\sqrt{77} \sqrt{78}} \\ & \theta=14.6^{\circ} \end{aligned}$
3	Intersection of 2 lines To find the intersection 2 lines, equate the equations of the 2 lines, for example, given $l_{1}: \mathbf{r}=\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)+\lambda\left(\begin{array}{l}4 \\ 5 \\ 6\end{array}\right)$ and $l_{2}: \mathbf{r}=\left(\begin{array}{l}2 \\ 3 \\ 4\end{array}\right)+\mu\left(\begin{array}{l}2 \\ 5 \\ 7\end{array}\right)$, $\begin{aligned} & l_{1}=l_{2} \\ & \left(\begin{array}{l} 1+4 \lambda \\ 2+5 \lambda \\ 3+6 \lambda \end{array}\right)=\left(\begin{array}{l} 2+2 \mu \\ 3+5 \mu \\ 4+7 \mu \end{array}\right) \end{aligned}$ solve any 2 equations to find the values of λ and μ i.e. $\begin{aligned} & 4 \lambda-2 \mu=1 \\ & 5 \lambda-5 \mu=1 \end{aligned} \text { to get } \lambda=\frac{3}{10} \mu=\frac{1}{10}$ Then sub. the values of λ and μ into the $3^{\text {rd }}$ equation. If LHS=RHS, then the lines intersect, otherwise the lines do not intersect and they are skew. To find the point of intersection, sub. λ or μ into the equation of either line.	

4* $\begin{aligned} & \text { Foot of perpendicular from a point to a line } \\ & \text { Example: Given } A(2,3,7) \text { and }{ }_{l_{1}}: \mathbf{r}=\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)+\lambda\left(\begin{array}{l}4 \\ 5 \\ 6\end{array}\right)\end{aligned}$
Step 1: Let N be the foot of perpendicular from A to the line.

$$
\text { Since } N \text { lies on the line, let } \overrightarrow{O N}=\left(\begin{array}{l}
1+4 \lambda \\
2+5 \lambda \\
3+6 \lambda
\end{array}\right)
$$

Step 2: Find $\overrightarrow{A N}$

$$
\begin{aligned}
& \overrightarrow{A N}=\overrightarrow{O N}-\overrightarrow{O A} \\
& =\left(\begin{array}{l}
1+4 \lambda \\
2+5 \lambda \\
3+6 \lambda
\end{array}\right)-\left(\begin{array}{l}
2 \\
3 \\
7
\end{array}\right)=\left(\begin{array}{l}
-1+4 \lambda \\
-1+5 \lambda \\
-4+6 \lambda
\end{array}\right)
\end{aligned}
$$

Step 3: Since $A N$ is perpendicular to line l_{1},

$$
\overrightarrow{A N} \cdot\left(\begin{array}{l}
4 \\
5 \\
6
\end{array}\right)=0
$$

$$
\left(\begin{array}{l}
-1+4 \lambda \\
-1+5 \lambda \\
-4+6 \lambda
\end{array}\right) \cdot\left(\begin{array}{l}
4 \\
5 \\
6
\end{array}\right)=0, \text { solve the equation to find } \lambda
$$

Step 4: Sub. λ into step 1 to get $\overrightarrow{O N}$.
If you need to find the perpendicular distance, then find $|\overrightarrow{A N}|$.

