Magnitude of vector
Given $\mathbf{a}=a_{1} \mathbf{i}+a_{2} \mathbf{j}+a_{3} \mathbf{k}, \quad|\mathbf{a}|=\sqrt{a_{1}{ }^{2}+a_{2}{ }^{2}+a_{3}{ }^{2}}$

	Formula	Example
1	Dot product(Scalar product) $\mathbf{a} \bullet \mathbf{b}=\|\mathbf{a}\|\|\mathbf{b}\| \cos \theta$	$\mathbf{a}=\left(\begin{array}{l} 1 \\ 2 \\ 3 \end{array}\right), \mathbf{b}=\left(\begin{array}{l} 4 \\ 5 \\ 6 \end{array}\right)$
	Note: $\mathbf{a} \bullet \mathbf{b}=\mathbf{b} \bullet \mathbf{a}$	$\mathbf{a} \bullet \mathbf{b}=\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right) \cdot\left(\begin{array}{l}4 \\ 5 \\ 6\end{array}\right)=4+10+18=32$
2	Angle between 2 vectors \mathbf{a} and \mathbf{b} $\cos \theta=\frac{\mathbf{a} \bullet \mathbf{b}}{\|\mathbf{a}\|\|\mathbf{b}\|}$ Note: 1. Both vectors \mathbf{a} and \mathbf{b} must converge/diverge from the same point. 2. If acute angle, then $\cos \theta=\frac{\|\mathbf{a} \bullet \mathbf{b}\|}{\|\mathbf{a}\|\|\mathbf{b}\|}$	
3	(a) If 2 vectors \mathbf{a} and \mathbf{b} are perpendicular, $\mathbf{a} \bullet \mathbf{b}=0$ (b) If 2 vectors are parallel, $\mathbf{a}=\mathrm{k} \mathbf{b}$, where k is a constant. (c) If 3 points A, B and C are collinear, $\overrightarrow{A B}=k \overrightarrow{A C}$, where k is a constant and B is a common point	
4	Unit Vector, $\hat{\mathbf{a}}=\frac{\mathbf{a}}{\|\mathbf{a}\|}$	
5	Ratio Theorem Given that the point C divides $A B$ in the ratio $\alpha: \beta$, $\overrightarrow{O C}=\frac{\alpha \overrightarrow{O B}+\beta \overrightarrow{O A}}{\alpha+\beta}$ If C is the midpoint of $A B$, then $\overrightarrow{O C}=\frac{\overrightarrow{O A}+\overrightarrow{O B}}{2}$	

6	Projection of \mathbf{a} on \mathbf{b} : Length of projection $O N$, of \mathbf{a} on $\mathbf{b}=\|\mathbf{a} \bullet \hat{\mathbf{b}}\|=\left\|\frac{\mathbf{a} \bullet \mathbf{b}}{\mathbf{b}}\right\|$ Projection vector, $\overrightarrow{O N}=\|\mathbf{a} \bullet \hat{\mathbf{b}}\| \hat{\mathbf{b}}$ Perpendicular distance from A to $O B$, $\overrightarrow{A N}=\|\mathbf{a} \times \hat{\mathbf{b}}\|$ Resolving a vector along parallel and perpendicular directions Vector a resolved along a direction parallel to $O B$ is $\overrightarrow{O N}=\|\mathbf{a} \bullet \hat{\mathbf{b}}\| \hat{\mathbf{b}}$ Vector a resolved in a direction perpendicular to $O B$ is $\mathbf{a}-\|\mathbf{a} \bullet \hat{\mathbf{b}}\| \hat{\mathbf{b}}$	$\mathbf{a}=\left(\begin{array}{l} 1 \\ 2 \\ 3 \end{array}\right), \mathbf{b}=\left(\begin{array}{l} 4 \\ 5 \\ 6 \end{array}\right)$ Length $\mathrm{ON}=\frac{\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right) \cdot\left(\begin{array}{l}4 \\ 5 \\ 6\end{array}\right)}{\left(\begin{array}{l}4 \\ 5 \\ 6\end{array}\right)}=\frac{32}{\sqrt{77}}$ units
7	Cross product(Vector product) $\mathbf{a} \times \mathbf{b}=\|\mathbf{a}\|\|\mathbf{b}\| \sin \theta$ Note: (i) $\mathbf{a} \times \mathbf{b}$ gives a vector perpendicular to both \mathbf{a} and \mathbf{b}. (ii) $\mathbf{a} \times \mathbf{b}=-\mathbf{b} \times \mathbf{a}$	$\begin{aligned} & \mathbf{a}=\left(\begin{array}{l} 1 \\ 2 \\ 3 \end{array}\right), \mathbf{b}=\left(\begin{array}{l} 4 \\ 5 \\ 6 \end{array}\right) \\ & \mathbf{a} \times \mathbf{b}= \\ & i(12-15)-\mathrm{j}(6-12)+\mathrm{k}(5-8)=\left(\begin{array}{c} -3 \\ 6 \\ -3 \end{array}\right) \end{aligned}$
8	Area of triangle $\left.=\frac{1}{2} \right\rvert\, \mathbf{a} \times \mathbf{b}$ Area of $/ /$ gram $=\mid \mathbf{a} \times \mathbf{b}$	Area of $\triangle O A B=\frac{1}{2}\|\mathbf{a} \times \mathbf{b}\|$ $\left.=\frac{1}{2}\left\|\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right) \times\left(\begin{array}{l}4 \\ 5 \\ 6\end{array}\right)\right\|=\frac{1}{2}\left(\begin{array}{c}-3 \\ 6 \\ -3\end{array}\right) \right\rvert\,$ $=\frac{1}{2} \sqrt{(-3)^{2}+(6)^{2}+(-3)^{2}}$ $=\frac{3}{2} \sqrt{6}$ units 2
9	Coplanar Vectors If vectors $\mathbf{a}, \mathbf{b}, \mathbf{c}$ are coplanar, then $\mathbf{a} \times \mathbf{b}$ gives a vector perpendicular to \mathbf{c} (or in any order), i.e. $(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}=0$	

