VECTORS 1 Summary

This list is not exhaustive. It is a summary of the most important and commonly used formulas for vectors 1.

Magnitude of vector

Given
$$\mathbf{a} = a_1 \mathbf{i} + a_2 \mathbf{j} + a_3 \mathbf{k}$$
, $|\mathbf{a}| = \sqrt{a_1^2 + a_2^2 + a_3^2}$

	T) 1	T 1
1	Formula Det product(Scaler product)	Example
1	Dot product(Scalar product)	$\begin{pmatrix} 1 \\ 2 \end{pmatrix}$ $\begin{pmatrix} 4 \\ 4 \end{pmatrix}$
	$\mathbf{a} \bullet \mathbf{b} = \mathbf{a} \mathbf{b} \cos \theta$	$\mathbf{a} = \begin{vmatrix} 2 & \mathbf{b} = \begin{vmatrix} 5 & \mathbf{b} \end{vmatrix}$
		$(3) \qquad (6)$
	Note: $\mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{a}$	(1) (4)
	Note. $\mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{a}$	$\mathbf{a} \bullet \mathbf{b} = \begin{pmatrix} 1 \\ 2 \end{pmatrix} \bullet \begin{pmatrix} 4 \\ 5 \end{pmatrix} = 4 + 10 + 18 = 32$
		$\begin{pmatrix} 3 \end{pmatrix} \begin{pmatrix} 6 \end{pmatrix}$
2	Angle between 2 vectors a and b	0
		a A
	$\cos\theta = \frac{\mathbf{a} \cdot \mathbf{b}}{ \mathbf{a} \mathbf{b} }$	XX
	Tallbi	A B
		(1)- (4)
	Note:	2 • 5
	1. Both vectors a and b must converge/diverge from	$\begin{pmatrix} 3 & 6 \\ 6 \end{pmatrix} \qquad 32$
	the same point.	$\cos AOB = \frac{(3)}{\ (1)\ (4)\ } = \frac{32}{\sqrt{14}\sqrt{77}}$
	2 IS 4 1 a•b	
	2. If <u>acute</u> angle, then $\cos \theta = \frac{ \mathbf{a} \cdot \mathbf{b} }{ \mathbf{a} \mathbf{b} }$	
		(3)(0)
	× ($A\hat{O}B = 12.9^{\circ}$
3	(a) If 2 vectors a and b are perpendicular ,	
	$\mathbf{a} \bullet \mathbf{b} = 0$	
	(b) If 2 vectors are parallel , $\mathbf{a} = k\mathbf{b}$, where k is a constant.	
	(c) If 3 points A, B and C are collinear,	
	\rightarrow \rightarrow	
	AB = k AC, where k is a constant	
	and B is a common point	
4	Unit Vector, $\hat{\mathbf{a}} = \frac{\mathbf{a}}{ \mathbf{a} }$	
	lal	
5	Ratio Theorem	
	Α α C β Β	
	H	
	0	
	Given that the point C divides AB in the ratio $\alpha:\beta$,	
	$\overrightarrow{OC} = \frac{\overrightarrow{\alpha OB} + \overrightarrow{\beta OA}}{\alpha + \beta}$.	
	If C is the midpoint of AB , then	
	$\overrightarrow{OC} = \frac{\overrightarrow{OA} + \overrightarrow{OB}}{2}$.	
	oc = <u>2</u> .	
	l .	1

6	Projection of \mathbf{a} on \mathbf{b} : A A B Length of projection ON , of \mathbf{a} on $\mathbf{b} = \left \mathbf{a} \cdot \hat{\mathbf{b}} \right = \left \frac{\mathbf{a} \cdot \mathbf{b}}{\mathbf{b}} \right $ Projection vector, $\overrightarrow{ON} = \left \mathbf{a} \cdot \hat{\mathbf{b}} \right \hat{\mathbf{b}}$ Perpendicular distance from A to OB , $\overrightarrow{AN} = \left \mathbf{a} \times \hat{\mathbf{b}} \right $	A $\mathbf{a} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \mathbf{b} = \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix}$ Length ON= $\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \bullet \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix} = \frac{32}{\sqrt{77}} \text{ units}$
	Resolving a vector along parallel and perpendicular directions	(0)
	Vector a resolved along a direction parallel to <i>OB</i> is $\overrightarrow{ON} = \begin{vmatrix} \mathbf{a} \cdot \hat{\mathbf{b}} & \hat{\mathbf{b}} \end{vmatrix}$ Vector a resolved in a direction perpendicular to <i>OB</i> is $\mathbf{a} - \begin{vmatrix} \mathbf{a} \cdot \hat{\mathbf{b}} & \hat{\mathbf{b}} \end{vmatrix}$	6017.50
7	Cross product(Vector product) $\mathbf{a} \times \mathbf{b} = \mathbf{a} \mathbf{b} \sin \theta$ Note: (i) $\mathbf{a} \times \mathbf{b}$ gives a vector perpendicular to both \mathbf{a} and \mathbf{b} . (ii) $\mathbf{a} \times \mathbf{b} = -\mathbf{b} \times \mathbf{a}$	$\mathbf{a} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \mathbf{b} = \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix}$ $\mathbf{a} \times \mathbf{b} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$ $\mathbf{i}(12-15) - \mathbf{j}(6-12) + \mathbf{k}(5-8) = \begin{pmatrix} -3 \\ 6 \\ -3 \end{pmatrix}$
8	Area of triangle = $\frac{1}{2} \mathbf{a} \times \mathbf{b} $ Area of //gram= $ \mathbf{a} \times \mathbf{b} $	A Area of $\triangle OAB = \frac{1}{2} \mathbf{a} \times \mathbf{b} $ $= \frac{1}{2} \begin{vmatrix} 1 \\ 2 \\ 3 \end{vmatrix} \times \begin{vmatrix} 4 \\ 5 \\ 6 \end{vmatrix} = \frac{1}{2} \begin{vmatrix} -3 \\ 6 \\ -3 \end{vmatrix}$ $= \frac{1}{2} \sqrt{(-3)^2 + (6)^2 + (-3)^2}$ $= \frac{3}{2} \sqrt{6} \text{units}^2$
		<u> </u>

Coplanar Vectors

If vectors \mathbf{a} , \mathbf{b} , \mathbf{c} are coplanar, then $\mathbf{a} \times \mathbf{b}$ gives a vector perpendicular to \mathbf{c} (or in any order), i.e. $(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c} = 0$