1	Equation of plane Vector form: $\mathbf{r}=\mathbf{a}+\lambda \mathbf{b}+\mu \mathbf{c}, \lambda, \mu \in \mathbb{R}$ \mathbf{a} is a fixed point on the plane, b and \mathbf{c} are vectors // to the plane. Note: \mathbf{b} and \mathbf{c} are not // to each other. Scalar product form The normal(perpendicular vector) to the plane is given by: $\quad \mathbf{n}=\mathbf{b} \times \mathbf{c}$ Equation of plane: $\mathbf{r} \cdot \mathbf{n}=\mathbf{a} \cdot \mathbf{n}$ Cartesian form Replace \mathbf{r} with $\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$ to obtain the Cartesian equation.	Find the equation of a plane that passes through $A(1,2,3)$ and is parallel to $(1,1,2)$ and (2,3,4). Ans: $\mathbf{r}=\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)+\lambda\left(\begin{array}{l}1 \\ 1 \\ 2\end{array}\right)+\mu\left(\begin{array}{l}2 \\ 3 \\ 4\end{array}\right), \lambda, \mu \in \mathbb{R}$ $\mathbf{n}=\left(\begin{array}{l} 1 \\ 1 \\ 2 \end{array}\right) \times\left(\begin{array}{l} 2 \\ 3 \\ 4 \end{array}\right)=\left(\begin{array}{c} -2 \\ 0 \\ 1 \end{array}\right), \text { so } \mathbf{r} \cdot\left(\begin{array}{c} -2 \\ 0 \\ 1 \end{array}\right)=\left(\begin{array}{l} 1 \\ 2 \\ 3 \end{array}\right) \cdot\left(\begin{array}{c} -2 \\ 0 \\ 1 \end{array}\right)$ to give $\mathbf{r} \cdot\left(\begin{array}{c}-2 \\ 0 \\ 1\end{array}\right)=1$ (Ans)
$\underline{2}$	Perpendicular distance from a point to a plane From the scalar product form, $\mathbf{r} \cdot \mathbf{n}=\mathbf{a} \cdot \mathbf{n}$ dividing both sides by the magnitude of \mathbf{n}, $\mathbf{r} \cdot \hat{\mathbf{n}}=\mathbf{a} \cdot \hat{\mathbf{n}}$ The RHS a. $\hat{\mathbf{n}}$ represents the \perp distance from the origin to the plane. Note: this formula is useful to find the distance between 2 planes.	$\begin{aligned} & \left(\begin{array}{l} -2 \\ \mathbf{c} \\ 0 \\ 1 \end{array}\right)=1 \\ & \mathbf{r} \cdot \hat{\mathbf{n}}=\frac{1}{\sqrt{5}} \\ & \text { Distance of origin to plane }=\frac{1}{\sqrt{5}} \text { units } \end{aligned}$
$\underline{3}$	Angle between 2 planes $\cos \theta=\frac{\mathbf{n}_{1} \bullet \mathbf{n}_{2}}{\mathbf{n}_{1}\| \| \mathbf{n}_{2} \mid},$ where \mathbf{n}_{1} and \mathbf{n}_{2} are the normal vectors of the planes Note: If $\underline{\text { acute }}$ angle, then $\cos \theta=\frac{\left\|\mathbf{n}_{1} \bullet \mathbf{n}_{2}\right\|}{\left\|\mathbf{n}_{1}\right\|\left\|\mathbf{n}_{2}\right\|}$	
4	Angle between 1 line 1 plane $\sin \theta=\frac{\mathbf{n} \bullet \mathbf{b}}{\|\mathbf{n}\|\|\mathbf{b}\|},$ where \mathbf{n} is normal vector of plane, b is direction vector of line. Note: If acute angle, then $\sin \theta=\frac{\|\mathbf{n} \bullet \mathbf{b}\|}{\|\mathbf{n}\|\|\mathbf{b}\|}$	

5	Intersection of line and plane Strategy: 1. Substitute line into plane, 2. Solve for arbitrary constant λ, 3. Sub. λ into line to find point of intersection.	Line: Plane: $\mathbf{r} \cdot\left(\begin{array}{c}-2 \\ 3 \\ 1\end{array}\right)=1^{-----(2)}$ Sub. (1) into (2): $\left(\begin{array}{c} 1+\lambda \\ 2+\lambda \\ 3+2 \lambda \end{array}\right) \cdot\left(\begin{array}{c} -2 \\ 3 \\ 1 \end{array}\right)=1 \text {, solve, } \lambda=-2$ Hence, pt. of intersection $=\left(\begin{array}{c}-1 \\ 0 \\ -1\end{array}\right)$
6	To find line of intersection of 2 planes Method 1: direction of the line of intersection, \mathbf{b}, is given by: $\mathbf{b}=\mathbf{n}_{1} \times \mathbf{n}_{2}$ Equation of line of intersection: $\mathbf{r}=\mathbf{a}+\lambda \mathbf{b}$ Note: This method will not work if a point common to both planes(a) is not given in qn. Method 2: Use GC. (Refer to eg) Method 3: (Manual calculation)	Method 2 Given eqns of 2 planes: $\begin{aligned} & x-y+2 z=3 \\ & 2 x-3 y-4 z=5 \end{aligned}$ solve with GC to get $\left(\begin{array}{l}x_{0} \\ y \\ z\end{array}\right)=\left(\begin{array}{c}4-10 z \\ 1-8 z \\ z\end{array}\right)=\left(\begin{array}{l}4 \\ 1 \\ 0\end{array}\right)+z\left(\begin{array}{c}-10 \\ -8 \\ 1\end{array}\right)$, which gives $\mathbf{r}=\left(\begin{array}{l} 4 \\ 1 \\ 0 \end{array}\right)+\lambda\left(\begin{array}{c} -10 \\ -8 \\ 1 \end{array}\right), \lambda \in \mathbb{R}(\mathrm{Ans})$
7*	Foot of perpendicular from a point to a plane Strategy: 1. equation of line $A N: r=\overrightarrow{O A}+\lambda_{\mathrm{n}}$, where \mathbf{n} is normal of plane 2. Substitute equation of line into plane to find λ for the point of intersection, N. 3. Substitute λ into (1) to find $\overrightarrow{O N}$, which is the foot of the perpendicular. Note: If need to find shortest distance from point to plane, find $\|\overrightarrow{A N}\|$.	Example: Given $A(1,2,3)$ and equation of plane $\begin{aligned} & \mathrm{r} \cdot\left(\begin{array}{l} 3 \\ 2 \\ 4 \end{array}\right)=4: \\ & l_{A N}: \mathrm{r}=\left(\begin{array}{l} 1 \\ 2 \\ 3 \end{array}\right)+\lambda\left(\begin{array}{l} 3 \\ 2 \\ 4 \end{array}\right) \end{aligned}$ Substitute $l_{A N}$ into equation of plane: $\left(\begin{array}{l} 1+3 \lambda \\ 2+2 \lambda \\ 3+4 \lambda \end{array}\right) \cdot\left(\begin{array}{l} 3 \\ 2 \\ 4 \end{array}\right)=4$ solving, $\lambda=\frac{-15}{29}$, and $\overrightarrow{O N}=\left(\begin{array}{c}-16 / 29 \\ 28 / 29 \\ 27 / 29\end{array}\right)$.

